
THE ARKHIPOV-BEZRUKAVNIKOV EQUIVALENCE

COLTON SANDVIK

Abstract. These expository notes accompany my BunG seminar talk on the
Arkhipov-Bezrukavnikov equivalence. First, we will setup the machinery of
central sheaves and Wakimoto sheaves. Then, we will explain the geometry
of coherent sheaves on the Springer resolution. We will use this to build a
functor from coherent sheaves on the Springer resolution to the antispherical
Hecke category. Finally, we will relate the antispherical Hecke category with
the Iwahori-Whittaker category.

1. Introduction

Let G be a connected reductive algebraic group over F where F = Fp. Let
B denote a Borel subgroup of G with maximal torus T . Let Wext = W ⋉ X∨

denote the extended affine Weyl group. The antispherical module Masph is the
right Z[Wext]-module given by the tensor product

(1) Masph := Z⊗Z[W ] Z[Wext]

where Z[W ] acts on Z by the sign representation. The antispherical module has two
other useful descriptions. The first is provided by the K-theory of G∨-equivariant
coherent sheaves on the Springer resolution Ñ ,

(2) [Db CohG
∨
(Ñ )] ∼= Masph.

The second is provided by q-deforming Masph into the Whittaker modules Masph
q

in the theory of p-adic groups. The Whittaker modules are described by "Iwahori-
Whittaker" functions on G◦(Fq((x))) for G = F ⊗Fq

G◦. These three descriptions
of the antispherical module give rise to three possible categorifications:

(1) P asph
I , an abelian category constructed by taking a quotient of perverse

sheaves on the affine flag variety (corresponds to 1);
(2) Db CohG

∨
(Ñ ), the derived G∨-equivariant coherent sheaves on Ñ (corre-

sponds to 2);
(3) PIW , an abelian category of Iwahori-Whittaker perverse sheaves given by

a version of the sheaf-function dictionary for Iwahori-Whittaker functions.
The celebrated equivalences of Arkhipov and Bezrukavnikov upgrade the differ-

ent descriptions of the antispherical module to equivalences of categories.

Theorem 1.0.1 (Arkhipov-Bezrukavnikov, [ArBe]). There are equivalences of tri-
angulated categories

Db CohG
∨
(Ñ ) ∼= DbP asph

I
∼= DbPIW .

Outline 1.0.2. (1) We will discuss central sheaves and Wakimoto sheaves.
These form an important class of sheaves on the affine flag variety, and
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will be crucial for constructing the functor from coherent sheaves to con-
structible sheaves.

(2) We will then study the geometry of the Springer resolution and use central
sheaves and Wakimoto sheaves to define the functor Db Coh(Ñ/G∨) →
DbP asph

I . This is in some sense, the hardest part.
(3) Next, we will explain the construction of Iwahori-Whittaker perverse sheaves,

as well as the functor P asph
I → PIW .

(4) After constructing the functor Db CohG
∨
(Ñ ) → DbPIW , the proof that it

is an equivalence is rather simple.

2. Central Sheaves and Wakimoto Sheaves

2.1. p-Adic motivation. Let G be a connected reductive group over a field Fq

and let GF be the corresponding group over F = Fq((t)). Let GO be the maximal
compact subgroup of GF (here O = Fq[[t]]). Let I ⊂ GO be the Iwahori subgroup.

Consider the map

π : C(I\GF /I) → C(GO\GF /I)
1

f 7→
∫
GO

f(x · g)dx

It is easy to check that π restricts to an algebra map

Z(C(I\GF /I)) → C(GO\GF /GO)

Moreover, by a theorem of Bernstein, the latter map is in fact an isomorphism of
algebras.

The basic idea of central sheaves is to provide a geometric categorification of the
inverse of this isomorphism. In order to construct this functor, one needs a theory
of nearby cycles.

2.2. Nearby cycles. Let X be a complex algebraic variety, and let f : X → C be
an algebraic map. We consider the subvarieties

X× := f−1(C×), X0 := f−1(0).

We can also consider the exponential map exp : C → C×, and set X̃× = X×C× C.2

We have the following commutative diagram

(3)
X0 X X× X̃×

{0} C C× C

i

f f f

j expX

exp

Definition 2.2.1. The nearby cycles functor is the functor3

Ψf : Db
c(X

×) → Db
c(X

0)

F 7→ (i∗j∗ expX∗ exp
∗
X F)[−1]

1The notation here means compactly supported invariant functions. The domain of π is the
affine Hecke algebra and the codomain of π is spherical Hecke algebra.

2X̃× is an analytic space, but not an algebraic variety.
3For now, one should consider these as sheaves with k-coefficients where k is an algebraic

closed field of characteristic 0.
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The theory of nearby cycles is rich and very general. It is often useful to black
box the geometry of the functor and instead think about its formal sheaf theoretic
properties.

Proposition 2.2.2. (1) The functor Ψf sends bounded constructible complexes
to bounded constructible complexes.4

(2) The functor Ψf is perverse t-exact.
(3) If ϕ : Y → X is a smooth map, then ϕ∗ commutes with nearby cycles, i.e.,

there is an isomorphism of functors

Ψf◦ϕ ◦ (ϕ |(f◦ϕ)−1(C×))
∗ ∼= (ϕ |(f◦ϕ)−1({0}))

∗ ◦Ψf .

(4) If ϕ : Y → X is a proper map, then there is an isomorphism of functors

Ψf ◦ (ϕ |(f◦ϕ)−1(C×))∗ = (ϕ |(f◦ϕ)−1({0}))∗Ψf◦ϕ.

(5) If f : X × C → C is the projection map, and F ∈ Db
c(X), then there is a

natural isomorphism of sheaves

Ψf (F ⊠ kC× [1]) ∼= F .

2.3. Affine Grassmannian and affine flag variety. Let G be a connected re-
ductive group over C. Consider its loop group LG and its positive loop group
L+G. Fix a Borel B+ = T ⋉ U with opposite Borel B− = T ⋉ U−. We let I
denote the Iwahori subgroup of L+G corresponding to B−. Let GrG denote the
affine Grassmannian of G, explicitly, it is the fppf-sheafification of the quotient
LG/L+G. Similarly, let FlG denote the affine flag variety of G, explicitly, it is the
fppf-sheafification of the quotient LG/I.

2.4. Gaitsgory’s central functor. The construction of the central functor re-
quires the introduction of a new geometric object, sometimes called the central
affine Grassmannian. It is an ind-scheme GrCen

G equipped with a regular map
f : GrCen

G → C. The central affine Grassmannian satisfies

GrCen,×
G := f−1(C×) = GrG ×C×, GrCen,×

G := f−1(C×) = FlG .

In this way, the central affine Grassmannian can be thought of as providing a
deformation of the affine Grassmannian to the affine flag variety.

We are now in the situation where we can apply the nearby cycles construction
of the previous section.5 Namely, we define a functor

Z : Db
c(GrG) → Db

c(FlG)

F 7→ Ψf (F ⊠ kC× [1]).

This can be upgraded to a functor of equivariant sheaves6

Z : Db
c(L

+G\GrG) → Db
c(I\FlG).

We call this functor Gaitsgory’s central functor.

4This is not obvious since expX is not an algebraic map.
5Technically, our construction of nearby cycles is for complex algebraic varieties and not ind-

varieties. Nonetheless, the central affine Grassmannian can be constructed as an inductive limit
of finite dimensional varieties over A1 whose fibers generically look like finite dimensional approx-
imations of GrG and at 0 looks like finite dimensional approximations of FlG.

6This requires an additional component where we construct a group ind-scheme L+G over A1

whose fibers generically are L+G except at 0 which is I. See Sections 2.2 and 10.3 of [AcRi].
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Recall that Db
c(L

+G\GrG) and Db
c(I\FlG) can be equipped with monoidal struc-

tures, denoted ⋆L
+G and ⋆I , respectively.7

Theorem 2.4.1 (Gaitsgory [Gai1]). (1) The functor Z is monoidal.
(2) The functor Z is perverse t-exact.
(3) The functor Z produces objects in the center of Db

c(I\FlG), i.e., for F ∈
Db

c(L
+G\GrG) and G ∈ Db

c(I\FlG), there are canonical isomorphsisms

Z(F) ⋆I G ∼= G ⋆I Z(F).

(4) For F ∈ Perv(L+G\GrG) and G ∈ Perv(I\Fl), the convolution Z(F) ⋆ G
is perverse.

(5) For any F ∈ Db
c(L

+G\GrG), there is a canonical isomorphism π∗◦Z(F) ∼=
F for canonical map π : FlG → GrG.

Proof. We will prove (2) and (5) to highlight how these statements mostly follow
from Proposition 2.2.2.

The proof of (2) is nearly obvious. Namely, the functor F 7→ F⊠kC[1] is perverse
t-exact and by Proposition 2.2.2 (2), nearby cycles is perverse t-exact.

To prove (5), one first constructs a map ϖ : GrCen
G → GrG ×C such that

ϖ |GrG ×C×= idGrG ×C× , ϖ |GrG ×{0}= π, and pr2 ◦ϖ = f . By Proposition 2.2.2 (4)
and Proposition 2.2.2 (5), there are isomorphism

F ∼= Ψpr2(F ⊠ kC[1])
∼= π∗Ψf (F ⊠ kC[1]) = π∗Z(F).

□

Motivated by Theorem 2.4.1, perverse sheaves of the form Z(F), where F ∈
Perv(L+G\GrG), are called central sheaves.

Aside 2.4.2. In light of Theorem 2.4.1 and Bernstein’s theorem for p-adic groups,
one may be tempted to conjecture that there is an equivalence

Db
c(L

+G\GrG) ∼= Z(Db
c(I\FlG))

induced by Gaitsgory’s central functor. This is in fact not the case, the center of the
affine Hecke category is in fact much larger. See for example [BNP] for a spectral
description of the center.

Remark 2.4.3. Recall the Geometric Satake equivalence gives an equivalence of
tensor categories

Sat : Rep(G∨)
∼→ Perv(L+G\GrG).

In this way, there is a central functor

Rep(G∨) → Perv(I\FlG)

given by composing the Satake equivalence with Gaitsgory’s central functor. We will
often abuse notation and write Z for either functor.

7Convolution on GrG is perverse t-exact, convolution on FlG is not t-exact.
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2.5. Wakimoto Sheaves. Recall the Bruhat decomposition stratifies the affine
flag variety into subvarieties

FlG =
⊔

w∈Wext

FlG,w

Let jw : FlG,w → FlG denote the embedding. Each FlG,w is an affine space of
dimension ℓ(w) where ℓ : Wext → Z≥0 is the length function for the quasi-Coxeter
structure on Wext. For each w ∈ Wext we define perverse sheaves

∆w = jw!kFlG,w
[ℓ(w)], ∇w = jw∗kFlG,w

[ℓ(w)].

These perverse sheaves are called the standards and costandard sheaves, respec-
tively. One can also consider the simple perverse sheaf, denoted ICw, given by
the image of the natural map ∆w → ∇w. The standards, costandards, and IC-
complexes are naturally I-equivariant.

The standard and costandard sheaves behave particularly nice under convolution.

Proposition 2.5.1. (1) For any x, y ∈ Wext such that ℓ(xy) = ℓ(x) + ℓ(y),
there exists canonical isomorphisms

∆x ⋆I ∆y
∼= ∆xy, ∇x ⋆I ∇y

∼= ∇xy.

(2) For any x ∈ Wext, there exist canonical isomorphisms

∆x ⋆I ∇x−1
∼= ∆e

∼= ∇x−1 ⋆I ∆x.

(3) For any x, y ∈ Wext, the sheaf ∆x ⋆I ∇y is perverse.

For λ ∈ X∨, choose λ1, λ2 ∈ X∨
+ such that λ = λ1 − λ2. We define a perverse

sheaf
Wλ = ∇λ1 ⋆

I ∆−λ2 .

The collection of such sheaves are called Wakimoto sheaves.

Proposition 2.5.2 (Mirković). Let λ, µ ∈ X∨

(1) The sheaf Wλ does not depend on the choice of λ = λ1 − λ2.
(2) The sheaf Wλ is supported on FlG,λ.
(3) We have that

Wλ ⋆I Wµ
∼= Wλ+µ.

Theorem 2.5.3 (Arkhipov-Bezrukavnikov, [ArBe]). (1) For any F ∈ Perv(L+G\GrG),
the perverse sheaf Z(F) admits a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = Z(F)

such that Fi/Fi−1 is of the form Wλi
for some λi ∈ X∨.

(2) For any λ ∈ X∨, the multiplicity of Wλ in the above filtration of Z(F) is
the dimension of the λ-weight space of Sat−1(F).

We will denote PWak
I for the full subcategory of Perv(I\FlG) consisting of per-

verse sheaves which admit Wakimoto filtrations.

Lemma 2.5.4. The category PWak
I is stable under convolution in Db

c(I\FlG).
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2.6. The Antispherical Quotient. It will be useful to shorten our notation for
I-equivariant perverse sheaves on FlG. Namely, we will write PI = Perv(I\FlG).

Let fWext ⊆ Wext be the subset of elements w which are minimal in Ww. We
define the antispherical Hecke category, denoted P asph

I , as the abelian category
constructed by taking the Serre quotient of PI by the Serre subcategory generated
by simple objects ICw with w /∈ fWext. It comes equipped with a quotient functor

PI → P asph
I .

3. Coherent Sheaves on the Springer Resolution

3.1. The Springer resolution. Let N denote the nilpotent cone of G∨. We can
consider the Springer resolution

Ñ := G∨ ×B∨
n∨.

The Springer resolution comes equipped with a moment map µ : Ñ → N along
with a projection map Ñ → G∨/B∨. The latter map makes Ñ into a vector bundle
over G∨/B∨. Moreover, it is a sub-vector bundle of g∨×G∨/B∨. For each λ ∈ X∨,
there is a line bundle OG∨/B∨(λ) on G∨/B∨. We will write OÑ (λ) for the pullback
of OG∨/B∨(λ) to Ñ .

Lemma 3.1.1. The category Db CohG
∨
(Ñ ) is generated by the following classes of

objects:
(1) the line bundles OÑ (λ), for λ ∈ X∨;
(2) the objects of the form V ⊗OÑ (λ) where V ∈ Rep(G∨) and λ ∈ X∨

+.

We will denote by N̂ the preimage of Ñ under the map g∨×G∨/U∨ → G∨/B∨.
We will also consider X := Spec(O(G∨/U∨)), the affine completion of G∨/U∨.
Note that G∨/U∨ is open X . We will denote ∂X for the complement of G∨/U∨ in
X . It can easily be checked that the infinitesimal universal stabilizer for the G∨-
action on G∨/U∨ is N̂ . We then define N̂X as the infinitesimal universal stabilizer
for the G∨-action on X . It is a closed subscheme of g∨ ×X , and contains N̂ as an
open subvariety. We summarize the above objects along with maps between them
by the diagram below:

(4)
Ñ N̂ N̂X

g∨ ×G∨/B∨ g∨ ×G∨/U∨ g∨ ×X

T∨-torsor open

The vertical maps are all inclusions of closed subschemes.
We will denote CohG

∨×T∨

free (N̂X ) for the full additive subcategory of CohG
∨×T∨

(N̂X )
consisting of free coherent sheaves, i.e. those of the form V ⊗ ON̂X

for V ∈
Rep(G∨×T∨). We can further consider the full subcategory Kb CohG

∨×T∨

free (N̂X )∂X

of Kb CohG
∨×T∨

free (N̂X ) consisting of objects whose cohomology is supported set-
theoretically on the preimage of ∂X under the projection N̂X → X .

Proposition 3.1.2. There is an functor

Kb CohG
∨×T∨

free (N̂X ) → Db CohG
∨
(Ñ )
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which factors uniquely through an equivalence of triangulated categories

Kb CohG
∨×T∨

free (N̂X )/Kb CohG
∨×T∨

free (N̂X )∂X ∼= Db CohG
∨
(Ñ )

Proof. The functor is pretty easy to construct. It is induced by the pullback functor

Db CohG
∨×T∨

(N̂X ) → Db CohG
∨×T∨

(N̂ )

along with an equivalence8

Db CohG
∨×T∨

(N̂ ) ∼= Db CohG
∨
(Ñ ).

Verifying that the desired functor is an equivalence is mostly just an exercise in
homological algebra and representation theory of algebraic groups. □

3.2. Construction of the functor I. We start by defining a functor

F1 : Rep(G∨ × T∨) → PWak
I

V ⊗ kT∨(λ) 7→ Z(Sat(V )) ⋆I Wλ

for V ∈ Rep(G∨) and λ ∈ X∨.9 This functor is well-defined by Lemma 2.5.4 and
Theorem 2.5.3.

The following is an easy consequence of Theorem 2.4.1 (3) and Proposition 2.5.2.

Lemma 3.2.1. The functor F1 is monoidal.

3.3. Construction of the functor II. Next, we wish to extend the functor F1 to
a monoidal functor

F2 : CohG
∨×T∨

free (N̂X ) → PWak
I .

First, we replace PWak
I be a (non-full) subcategory C which is symmetric monoidal.10

One can then check that F1 factors through C to produce a functor

F ′
1 : Rep(G∨ × T∨) → C.

By a Tannakian-like formalism, there is an equivalence

H : C → A-modG∨×T∨

free

for some algebra A endowed a G∨ × T∨-action. It can be checked that via H, F ′
1

identifies with the functor

Rep(G∨ × T∨) → A-modG∨×T∨

free

V 7→ V ⊗A.

Extending F ′
1 to a functor CohG

∨×T∨

free (N̂X ) → PWak
I is then equivalent to a

morphism G∨ × T∨-equivariant algebras

O(N̂X ) → A.

This done by viewing O(N̂X ) as a quotient of O(g∨)⊗O(X ). We start by defining
equivariant algebra morphisms O(g∨) → A and O(X ) → A. We give some brief
remarks on how these are constructed:

8This equivalence can be seen as just an isomorphism of underlying stacks N̂/(G∨ × T∨) ∼=
Ñ/G∨.

9It is not clear that this is functorial due to our presentation of Wakimoto sheaves. More
precisely, one can define a functor Rep(T∨) → PI which takes kT∨ (λ) to Wλ.

10This is somewhat necessitated by the observation that CohG
∨×T∨

free (N̂X ) is symmetric
monoidal whereas PWak

I is not.
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(1) The morphism O(g∨) → A is effectively the logarithm of monodromy en-
domorphism for nearby cycles.

(2) The morphism O(X ) → A is determined by the Wakimoto filtration for
central sheaves given by Theorem 2.5.3.

It is then easy to check that the morphism O(g∨) ⊗ O(X ) → A factors uniquely
through the desired morphism O(N̂X ) → A. The functor F2 is then the composition
of functors

F2 : CohG
∨×T∨

free (N̂X ) → A-modG∨×T∨

free
∼= C ↪→ PWak

I .

M 7→ M ⊗O(N̂X ) A.

3.4. Construction of the functor III. Recall from Proposition 3.1.2, that there
is an equivalence of categories

Kb CohG
∨×T∨

free (N̂X )/Kb CohG
∨×T∨

free (N̂X )∂X ∼= Db CohG
∨
(Ñ )

To check that F2 extends to a functor

Db CohG
∨
(Ñ ) → DbPWak

I

it then suffices to check that KbF2 takes Kb CohG
∨×T∨

free (N̂X )∂X to acyclic complexes
in KbPWak

I . This can be checked rather explicitly, and is omitted.
The upshot is there exist a functor

F : Db CohG
∨
(Ñ ) → DbPWak

I ↪→ DbPI ,

V ⊗OÑ 7→ Z(Sat(V )),

OÑ (λ) 7→ Wλ.

We will also refer to a variation of this functor F by composing with realization
functor,

F : Db CohG
∨
(Ñ ) → DbPI → Db(I\FlG).

We emphasize that the realization functor for I-equivariant perverse sheaves on FlG
is not an equivalence.

4. Antispherical Category and Iwahori-Whittaker Sheaves

We will construct another categorification of the antispherical module. In par-
ticular, we will define the category of Iwahori-Whittaker perverse sheaves, denoted
PIW along with an exact, fully faithful functor

P asph
I → PIW .

We will show that the image of the central sheaves under the functor

Rep(G∨) → PI → P asph
I → PIW

are the tilting objects.

Remark 4.0.1. In order to make sense of Iwahori-Whittaker sheaves, we will need
to depart from working in the Betti setting.11 Instead, we will fix F to be an algebraic
closure of Fp. Now G will be a connected reductive group over F, and likewise all
ind-schemes will be over F. We will also fix ℓ ̸= p, and all of our constructible

11This is not strictly necessary. We could work with the Krillov model ( [Gai2]) in the Betti
setting, but such considerations are beyond the scope of this note.
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sheaves should be interpreted as étale Qℓ-sheaves. Everything discussed so far has
an obvious analogue for étale sheaves.

4.1. Warmup: Whittaker sheaves. First, we will explain a simplistic version
of Whittaker sheaves. Let X be an H variety where H is an algebraic group
(not necessarily reductive). Let a : H × X → X denote the action map. Fix a
homomorphism X : H → Gm. One can consider the Artin-Schreier local system
LAS on Ga.12 The pullback X ∗LAS is a multiplicative local system on H. One can
then consider the (H,X ∗LAS)-equivariant derived category of constructible sheaves
on X, denoted Db

c(H\X∗LASX).
Intuitively, but not precisely13, objects of Db

c(H\X∗LASX) consist of sheaves
F ∈ Db

c(X) along with a natural isomorphism

a∗F ∼= X ∗LAS ⊠ F .

Whittaker sheaves tend to satisfy strong cohomological vanishing properties mo-
tivated by the following essential property:

H•(Ga,LAS) ∼= H•
c (Ga,LAS) = 0.

As a result, Whittaker sheaves are often tightly controlled:
Example 4.1.1 Let Ga act on P1 via t · [x : y] = [x + yt : y]. Then there are two
Ga-orbits on P1– one isomorphic to A1 and the other isomorphic to a point. The
point strata is too small to admit a Whittaker equivariant sheaf since any sheaf on
a point is Ga-equivariant. As a result,

Db
c(Ga\χP1) ∼= Db

c(Ga\χA1).

It is then easy to check that Db
c(Ga\χA1) ∼= Db(Qℓ-mod) induced by taking the

stalk at 0 ∈ A1.

4.2. The Iwahori-Whittaker category. Let I+u be the pro-unipotent radical
if I+, i.e., the preimage of U+ under the natural map LG → G. We will fix
pinnings of U+ to obtain an isomorphism U+/[U+, U+] ∼=

∏
Ga. Define a group

homomorphism obtained as the composition

X : I+u → U+ → U+/[U+, U+] ∼=
∏

Ga
sum→ Ga

We define the category of Iwahori-Whittaker sheaves, denoted Db
IW(FlG), as the

(I+U ,X ∗(LAS))-equivariant derived category of Qℓ-sheaves on FlG. The perverse
t-structure on Db

c(FlG) restricts to that on Db
IW(FlG). We denote the category of

perverse Iwahori-Whittaker sheaves by PIW . There is a right action of Db
c(I\FlG)

on Db
IW(FlG) defined similarly to the convolution on Db

c(I\FlG). Namely, there is
a bifunctor

(−) ⋆I (−) : Db
IW(FlG)×Db

c(I\FlG) → Db
IW(FlG).

12Concretely, we choose a primitive p-th root of unity ζ ∈ Qℓ. There is a direct summand of
the pushforward of the constant sheaf under the Galois covering Ga → Ga defined by x 7→ xp − x
on which Z/pZ acts via the character [n] 7→ ζn

13To make this precise, one must incorporate higher coherence relations given by the multipli-
cation maps Hk ×X → X, c.f. [Gai2]
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4.3. Highest Weight Structure. The I+u -orbits on FlG are parameterized by
Wext. There is a bijection

X∨ ↔ fWext

λ 7→ wλ

Let FlIWG,λ denote the I+u -orbit corresponding to wλ, and let jIWλ : FlIWG,λ ↪→ FlG
denote the embedding.

The only I+u -orbits on FlG which admit nonzero Whittaker local systems are
those indexed by w ∈ fWext. In fact, for each λ ∈ X∨, there is a unique rank-1
Whittaker local system, denoted LX ,λ on FlIWG,λ. For each λ ∈ X∨ we define sheaves

∆IW
λ = jIWλ! LX ,λ[dimFlIWG,λ], ∇λ = jIWλ∗ LX ,λ[dimFlIWG,λ].

These sheaves are called the standards and costandard sheaves, respectively. They
are naturally Iwahori-Whittaker perverse sheaves. The image of the canonical mor-
phism ∆IW

λ → ∇IW
λ is a simple Iwahori-Whittaker perverse sheaf, denoted ICIW

λ .

Proposition 4.3.1. The category PIW has a natural structure of a highest weight
category with weight poset X∨.

The key observation of Proposition 4.3.1 is that PIW admits tilting sheaves.
Namely, for each λ ∈ X∨, there is a unique indecomposable Iwahori-Whittaker
tilting perverse sheaf T IW

λ .

Corollary 4.3.2. The realization functor induces an equivalence of categories

DbPIW ∼= Db
IW(FlG).

4.4. Iwahori-Whittaker averaging. Define the Iwahori-Whittaker averaging func-
tor

AvIW : Db(I\FlG) → Db
IW(FlG)

F 7→ ∆IW
0 ⋆I F .

Theorem 4.4.1 (Arkhipov-Bezrukavnikov, [ArBe]). (1) The functor AvIW is
perverse t-exact.

(2) There restriction of AvIW to perverse sheaves, PI → PIW factors through
a fully faithful functor P asph

I → PIW .

Proof Sketch of Theorem 4.4.1. By general geometric considerations and looking
at orbits, one can show that

(5) AvIW(ICw) = 0

unless w ∈ fWext. Moreover, for any w ∈ Wext, there are isomorphisms

(6) AvIW(∆w) ∼= ∆IW
λ , AvIW(∇w) ∼= ∇IW

λ

where λ ∈ X∨ is the unique element such that W · w = W · wλ.
A basic homological algebra allows one to deduce from 5 and 6 that AvIW is

perverse t-exact. Moreover, from 5, AvIW will factor through the aspherical Hecke
category.

In order to prove that the induced functor AvIW : P asph
I → PIW is fully faithful,

one constructs a section of AvIW . Intuitively, this is done by averaging from I∩I+u -
equivariance to I-equivariance, taking perverse cohomology, and then applying the
quotient functor to the aspherical Hecke category. □
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4.5. Central sheaves and Iwahori-Whittaker tilting sheaves. The main re-
sult and motivation for introducing Iwahori-Whittaker sheaves comes from the fol-
lowing theorem.

Theorem 4.5.1 (Arkhipov-Bezrukavnikov, [ArBe]). Consider the composition of
functors

ZIW : Rep(G∨)
Z→ PI

AvIW→ PIW

For all V ∈ Rep(G∨), the perverse sheaf ZIW(V ) is tilting. Moreover, for any
λ ∈ X∨,

(ZIW(V ) : ∆IW
λ ) = (ZIW(V ) : ∇IW

λ ) = dimVλ.

Proof Sketch of Theorem 4.5.1. The basic idea of the proof is to reduce until the
remaining cases can be checked explicitly by hand. An outline of steps is given
below.

(1) If V, V ′ ∈ Rep(G∨) such that ZIW(V ) and ZIW(V ′) are tilting, then
ZIW(V ⊗ V ′) is tilting. This basically follows from properties of convo-
lution in Db(I\FlG).

(2) If the theorem holds G semisimple group, then it holds for G reductive.
(3) By (1) and (2), it suffices to assume that G is semisimple and V is a simple

G∨-module whose highest weight is either miniscule or quasi-miniscule. The
miniscule case is rather strightforward computation. Whereas the quasi-
miniscule case is much more difficult and requires studying certain quotients
of PI .

□

5. The Equivalence

We consider the functor

FIW : Db CohG
∨
(Ñ ) → Db

IW(FlG)

defined as the composition

Db CohG
∨
(Ñ )

F→ DbPI → Db
c(I\FlG)

AvIW→ Db
IW(FlG).

Alternatively, by Theorem 4.4.1 and Corollary 4.3.2 it can be defined as the com-
position

Db CohG
∨
(Ñ )

F→ DbPI
AvIW→ DbPIW ∼= Db

IW(FlG).

We can check that FIW maps objects as follows:

(7)

Db Coh(Ñ/G∨) Db(I\FlG) Db
IW(FlG)

V ⊗OÑ Z(Sat(Lλ)) T IW(V )

OÑ (λ) Wλ AvIW(Wλ)
K0∼ ∆IW

λ

F AvIW
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Note that the fact that FIW(Lλ ⊗ OÑ ) is tilting follows from Theorem 4.5.1. We
write T IW(V ) for this tilting object.14

Additionally, AvIW(Wλ) is not isomorphic to the standard object ∆IW
λ , but

they represent the same class in the Grothendieck group of Db
IW(FlG).

We finally arrive at the main theorem– the Arkhipov-Bezrukavnikov equivalence.

Theorem 5.0.1 (Arkhipov-Bezrukavnikov, [ArBe]). There functor FIW : Db CohG
∨
(Ñ ) →

Db
IW(FlG) is an equivalence of categories.

Proof Sketch of Theorem 5.0.1. The fact that FIW is essentially surjective follows
from the description given in (7) along with a routine homological algebra argument.

In order to show that for F ,G ∈ Db CohG
∨
(Ñ ), the morphism

(8) HomDb CohG∨
(Ñ )(F ,G) → HomDb

IW(FlG)(FIW(F), FIW(G))

is an isomorphism, it suffices by a 5-lemma argument to consider the case of F = OÑ
and G = V ⊗ OÑ (λ)[n] for some V ∈ Rep(G∨), some λ ∈ X∨

+ and some n ∈ Z.
The fact that (8) is injective is mostly straightforward and representation theoretic.
Moreover, it is not hard to check that

dimHomDb CohG∨
(Ñ )(OÑ , V ⊗OÑ (λ)[n]) =

{
dimV−λ n = 0

0 n ̸= 0.

Note that there are isomorphisms

FIW(OÑ ) = ∆IW
0 , FIW(V ⊗OÑ (λ)) ∼= ZIW(V ) ⋆I Wλ.

On the left-hand side of (8),

HomDb
IW(FlG)(∆

IW
0 , ZIW(V ) ⋆I Wλ[n]) ∼= HomDb

IW(FlG)(∆
IW
0 ⋆I W−λ, Z

IW(V )[n])

(2.5.2)

∼= HomDb
IW(FlG)(∆

IW
−λ , ZIW(V )[n])(6)

We then conclude by Theorem 4.5.1 that

dimHomDb
IW(FlG)(∆

IW
0 , ZIW(V ) ⋆I Wλ[n]) =

{
dimV−λ n = 0

0 n ̸= 0.

Therefore, FIW is fully faithful. □

Corollary 5.0.2 (Arkhipov-Bezrukavnikov, [ArBe]). There are equivalences of cat-
egories

Db CohG
∨
(Ñ ) DbP asph

I DbPIW Db
IW(FlG)

DbPI

∼ ∼ ∼

14It is natural to ask whether T IW (Lλ) ∼= T IW
λ for λ ∈ X∨

+. This is in fact the case, and can
be obtained as a corollary of Theorem 5.0.1.
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